Do aluminum vaccine adjuvants contribute to the rising prevalence of autism?

Lucija Tomljenovic a,⁎, Christopher A. Shaw a,⁎ b

Abstract

Autism spectrum disorders (ASD) are serious multisystem developmental disorders and an urgent global public health concern. Dysfunctional immunity and impaired brain function are core deficits in ASD. Aluminum (Al), the most commonly used vaccine adjuvant, is a demonstrated neurotoxin and a strong immune stimulator. Hence, adjuvant Al has the potential to induce neuroimmune disorders. When assessing adjuvant toxicity in children, two key points ought to be considered: (i) children should not be viewed as “small adults” as their unique physiology makes them much more vulnerable to toxic insults; and (ii) if exposure to Al from only few vaccines can lead to cognitive impairment and autoimmunity in adults, is it unreasonable to question whether the current pediatric schedules, often containing 18 Al adjuvanted vaccines, are safe for children? By applying Hill’s criteria for establishing causality between exposure and outcome we investigated whether exposure to Al from vaccines could be contributing to the rise in ASD prevalence in the Western world. Our results show that: (i) children from countries with the highest ASD prevalence appear to have the highest exposure to Al from vaccines; (ii) the increase in exposure to Al adjuvants significantly correlates with the increase in ASD prevalence in the United States observed over the last two decades (Pearson r = 0.92, p = 0.0001); and (iii) a significant correlation exists between the amounts of Al administered to preschool children and the current prevalence of ASD in seven Western countries, particularly at 3–4 months of age (Pearson r = 0.89–0.94, p = 0.0018–0.0248). The application of the Hill’s criteria to these data indicates that the correlation between Al in vaccines and ASD may be causal. Because children represent a fraction of the population most at risk for complications following exposure to Al, a more rigorous evaluation of Al adjuvant safety seems warranted.

1. Introduction

During prenatal and early postnatal development the brain is extremely vulnerable to neurotoxic insults [1,2]. Not only are these highly sensitive periods of rapid brain development in general [3] but also, the blood brain barrier (BBB) is incomplete and thus more permeable to toxic substances during this time [2,4,5]. Further, immune challenges during early development, including those induced by vaccines, can lead to permanent detrimental alterations of nervous and immune system function [6–9]. Experimental evidence also shows that simultaneous administration of as little as two to three immune adjuvants, or repeated stimulation of the immune system by the same antigen, can overcome genetic resistance to autoimmunity in animals [10,11]. Moreover, in adult humans, a variety of conditions encompassed by the ‘Autoimmune/inflammatory syndrome induced by adjuvants’ (‘ASIA’) have been linked to exposure to aluminium (Al) vaccine adjuvants (Table 1).

In many Western countries, by the time children are 4–6 years old they will have received a total of 23–32 vaccines [12,13], many with Al adjuvants, through routine pediatric vaccine schedules [2,14]. According to the United States Food and Drug Administration (US FDA), safety assessments for vaccines have often not included appropriate toxicity studies because vaccines have not been viewed as inherently toxic [15]. However, if a few vaccines administered to adults can result in adverse outcomes, such as the ‘ASIA’ syndrome, should we assume without experimental evidence that the current pediatric schedules are safe for children?

Analysis of the relevant data shows that the number of vaccinations recommended prior to school entry increased from 10 in the late 1970s to 32 in 2010 (18 of which contain Al adjuvants) [16]. During this same period, the prevalence of autism spectrum disorders (ASD) in the US also increased by as much as 2000% [16]. While such observations have been of interest, the potential role of vaccines in the development of ASD remains controversial. ASD are characterized by marked impairments in social skills, verbal communication, behavior and cognitive dysfunction [17–19]. Although the etiology of 90% of ASD is still largely unknown [20,21], a growing body of scientific literature shows that neuroimmune abnormalities (i.e., abnormal cytokine profiles, neuroinflammation and presence of autoantibodies...
Table 1

<table>
<thead>
<tr>
<th>Condition</th>
<th>Disease</th>
<th>Th shift</th>
<th>Inflammatory profile</th>
<th>AI adjuvant</th>
<th>Inflammatory profile</th>
<th>General immunostimulatory effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthritis</td>
<td>Excessive Th1</td>
<td>Increased IL-1, IL-6, IL-12, TNF-α, IFN-γ, MIP-1α and oxidative stress</td>
<td>Increases cytokines (IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, TNF-α), chemokines (IL-8, MCP-1, MIP-1α, MIP-1β), ROS, and nitric oxide (NO)</td>
<td>Increases the expression of MHC class I and II and associated co-stimulatory molecules on peripheral blood monocytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmune thyroid disease</td>
<td></td>
<td>Increased NLRP3 inflammasome complex signaling and NLRP3-dependent over-production of IL-1β, IL-6, IL-18, TNF-α and reactive oxygen species (ROS) in MS, EAE, Type 1 diabetes mellitus [164–166] and animal models of IBD [167]</td>
<td>Activates the NLRP3 inflammasome complex and NLRP3-dependent cytokines [33,34,172]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammatory bowel disease (IBD)/Crohn's disease (CD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1 diabetes mellitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple sclerosis (MS)</td>
<td>Excessive Th2</td>
<td>Increased IL-10, IL-18, IL-6, IFN-γ, TNF-α</td>
<td>Increases IL-4, IL-6, B-cell hyperlymphocytosis, infiltration of large periodic acid-schiff (PAS)-positive macrophages, and CD8+ T lymphocytes in the absence of conspicuous muscle fibre damage [53,95,158]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gulf War Syndrome (GWS)</td>
<td>Mixed</td>
<td>Increased IFN-γ, IL-5, IL-6 [159]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autism spectrum disorders (ASD)</td>
<td>Both Th1 and Th2 shifts have been reported</td>
<td>Increased IL-1α, IL-4, IL-5, IL-6, TNF-α, IL-8, MCP-1, MIP-1β, MHC class II</td>
<td>Activates the NLRP3 inflammasome complex and NLRP3-dependent cytokines</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Linked to Al-adjuvanted vaccines [32,101,102,176,177].
† Specifically recognized as 'Autoimmune/inflammatory syndrome induced by adjuvants' (‘ASIA’) [32].

against brain proteins) occur in ASD patients and may contribute to the diversity of ASD phenotypes [17,20,22–26].

Al is an experimentally demonstrated neurotoxin whose ability to impact the human nervous system has been known for decades [16,27–29]. For example, exposure to as little as 20 μg/kg bw of Al for periods >10 days is sufficient to cause neurodevelopmental delays in preterm infants [28]. In addition, Al is a potent stimulator of the immune system, indeed this is the very reason why it is used as an adjuvant for vaccines [14,30–34]. Given this, it remains surprising that in spite of over 80 years of use, the safety of Al adjuvants appears to rest largely on assumptions rather than experimental evidence. For example, nothing is known about the toxicology and pharmacokinetics of Al compounds in infants and children [35]. In addition, the mechanisms by which Al adjuvants interact with the immune system remain far from clear [34,35]. In this regard it is notable that many vaccine trials usually use an Al adjuvant containing “placebo” or another vaccine as the “control” group [36–38], rather than a saline control. This study design has not allowed a direct comparison of the efficacy and safety of the antigen alone versus the Al adjuvant. In spite of these gaps in our knowledge about Al adjuvants, the use of Al in vaccines is widely regarded as safe and effective [35,39,40].

Should it be of concern that so little is known about the potential deleterious impacts of Al adjuvants on the developing central nervous system (CNS) given that worldwide, preschool children are regularly exposed to significant amounts of Al from vaccines [2,14]? To address this question, we investigated pediatric vaccine schedules from various Western countries in order to gain a better understanding of potential Al exposure from vaccines in children. Our results, supported by the Hill’s criteria for establishing causality between exposure and outcome [41], suggest that a causal relationship may exist between the amount of Al administered to preschool children at various ages through vaccination and the rising prevalence of ASD.

2. Methods

2.1. Collection of ASD prevalence data

We analyzed the currently available data from the US Department of Education Annual Reports to Congress for ASD prevalence for the period from 1991 to 2008 [42–52] in the 6–21 year-old age cohort and correlated it with the estimated total Al exposure from pediatric vaccines (given to preschool children before the age of 6 years), sourced from the US Centers for Disease Control and Prevention (CDC) [12]. In addition, we obtained the most recent available data for ASD prevalence and vaccination schedules from several other countries including the United Kingdom (UK), Australia, Canada, Sweden, Finland and Iceland (see below for source references). Using the latter data, we carried out a correlation analysis to investigate the potential association between ASD prevalence and estimated vaccine-derived Al exposures in preschool children at various ages. We also correlated ASD prevalence with the number of Al-adjuvanted vaccines given to preschool children according to the relevant vaccination schedules from each country.

2.2. Calculations of Al exposure from vaccines

For the purpose of correlating ASD prevalence to Al exposure, for each country studied, we calculated the cumulative amount of Al administered from all vaccines that children receive during the specified age period (i.e., the cumulative exposure to Al at 4 months of age...
includes Al from vaccines given at 2, 3 and 4 months). This rationale for using cumulative amounts of adjvant Al in our analysis is also supported by the following observation: Al has been shown to persist at the site of injection from several months up to 8–10 years following vaccination in patients suffering from macrophagic myofasciitis, an autoimmune disease linked to Al vaccine adjuvants [53]. The number and types of pediatric vaccines were sourced from the US CDC [12], UK Department of Health [13], Public Health Agency of Canada [54], Australian Government Department of Health and Aging [55], Swedish Institute for Infectious Disease Control [56], KTL (Finish) National Public Health Institute [57] and Iceland's A Surveillance Community Network for Vaccine Preventable Infectious Diseases [58]. The Al content used was derived from an article by Offit and Jew [39] and manufacturer's product monographs (Table 2 [59–62]). Because the Al content varies between different brands of certain vaccines (Table 2), for each vaccination appointment, three possible exposures were calculated: (i) maximum, assuming exposure to vaccines with the highest Al content (i.e., 625 μg Al for DTaP from Infanrix and 225 μg Al for Hib from PedVax), (ii) mean, using the calculated mean Al-content values of different brands of DTaP and Hib (i.e., 375 μg for DTaP=(625+330+170)/3) and 112.5 μg for Hib=(0+225)/2); and (iii) minimum, assuming exposure to vaccines with the lowest Al content (i.e., 170 μg Al for DTaP from Tripedia and 0 μg Al for Hib from Hibercix). All three of these exposures were then correlated with the relevant ASD prevalence data. With regard to vaccine uptake in the US, we acknowledge that there are likely to be variations between individual states due to differences in adopting CDC's recommendations. However, since the ASD prevalence data pertain to the US population as a whole, rather than individual states, we felt that our overall evaluation with regard to US vaccine uptake was the most appropriate measure to use.

2.3. Exclusion/inclusion criteria

Certain vaccines were excluded from our calculations since the addition of these to childhood vaccination schedules occurred after the relevant ASD prevalence study periods. For example, in Australia, pneumococcal vaccine (PCV) was introduced in 2003 [63] and the ASD prevalence study conducted in 2005 provided data for 6–12 year-old children (1993–1999 birth cohort [64]); in Canada PCV and meningococcal serogroup C (MenC) were introduced in 2005 [65] and 2001 [66] respectively, and the ASD prevalence report was for 1997–1998 birth cohort [67]; in Sweden PCV was introduced in 2009 [68], ASD prevalence report was for 1977–1994 birth cohort [69]; in Finland, rotavirus vaccine was introduced in 2009 [70] and the ASD prevalence report was for 1979–1994 birth cohort [71]; in Iceland, meningococcal serogroup C (MenC) was introduced in 2002 [58] with ASD prevalence report for the 1984–1993 birth cohort [72]. ASD prevalence data for the US and UK were from seven Western countries: the UK, US, Canada, Australia, Sweden, Finland and Iceland. Note that children from countries with the highest ASD prevalence (i.e., UK, US, Australia and Canada) appear to have a higher exposure to Al from vaccines than do children from Scandinavian

Table 2
Al-adjuvant content in licensed vaccines.

<table>
<thead>
<tr>
<th>Al adjuvant</th>
<th>Vaccine</th>
<th>Trade name</th>
<th>Manufacturer</th>
<th>Amount (μg) per dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al hydroxide</td>
<td>DTaP</td>
<td>Infanrix</td>
<td>GlaxoSmithKline</td>
<td>625 [39]</td>
</tr>
<tr>
<td></td>
<td>DTaP</td>
<td>Daptacept</td>
<td>Aventis Pasteur</td>
<td>330 [39]</td>
</tr>
<tr>
<td></td>
<td>DTaP</td>
<td>Tripedia</td>
<td>Aventis Pasteur</td>
<td>170 [39]</td>
</tr>
<tr>
<td></td>
<td>HA</td>
<td>Havrix</td>
<td>GlaxoSmithKline</td>
<td>250 [39]</td>
</tr>
<tr>
<td></td>
<td>Hib</td>
<td>PedVax</td>
<td>Merck and Co</td>
<td>225 [39]</td>
</tr>
<tr>
<td></td>
<td>Hib</td>
<td>Hibercix</td>
<td>GlaxoSmithKline</td>
<td>0 [62]</td>
</tr>
<tr>
<td></td>
<td>Anthrax</td>
<td>Biothreat</td>
<td>Bioprot Corp</td>
<td>600 [60]</td>
</tr>
<tr>
<td>Al phosphate</td>
<td>PCV</td>
<td>Prevnar</td>
<td>Wyeth</td>
<td>125 [39]</td>
</tr>
<tr>
<td></td>
<td>MenC</td>
<td>Menitec</td>
<td>Wyeth</td>
<td>125 [39]</td>
</tr>
<tr>
<td></td>
<td>Al sulfate</td>
<td>Recombivax</td>
<td>Merck and Co</td>
<td>250 [61]</td>
</tr>
</tbody>
</table>

* Pediatric dose = 250 μg, adult dose = 500 μg.

3. Results

3.1. Al exposure from vaccines in adults and children based on body weight

Table 3 shows the estimated amounts of Al administered through vaccination to preschool children in the US. At 2 months of age, US infants receive the highest amount of Al per body weight from vaccines (172.5 μg/kg bw, mean exposure) compared to other ages. Table 4 shows Al exposure from vaccines per kg of body weight in children from seven Western countries: the UK, US, Canada, Australia, Sweden, Finland and Iceland. Note that children from countries with the highest ASD prevalence (i.e., UK, US, Australia and Canada) appear to have a higher exposure to Al from vaccines than do children from Scandinavian

Table 3
Al exposure from vaccines in adults and children based on body weight.

<table>
<thead>
<tr>
<th>Al adjuvant</th>
<th>Vaccine</th>
<th>Trade name</th>
<th>Manufacturer</th>
<th>Amount (μg) per kg bw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al hydroxide</td>
<td>DTaP</td>
<td>Infanrix</td>
<td>GlaxoSmithKline</td>
<td>625 [39]</td>
</tr>
<tr>
<td></td>
<td>DTaP</td>
<td>Daptacept</td>
<td>Aventis Pasteur</td>
<td>330 [39]</td>
</tr>
<tr>
<td></td>
<td>DTaP</td>
<td>Tripedia</td>
<td>Aventis Pasteur</td>
<td>170 [39]</td>
</tr>
<tr>
<td></td>
<td>HA</td>
<td>Havrix</td>
<td>GlaxoSmithKline</td>
<td>250 [39]</td>
</tr>
<tr>
<td></td>
<td>Hib</td>
<td>PedVax</td>
<td>Merck and Co</td>
<td>225 [39]</td>
</tr>
<tr>
<td></td>
<td>Hib</td>
<td>Hibercix</td>
<td>GlaxoSmithKline</td>
<td>0 [62]</td>
</tr>
<tr>
<td></td>
<td>Anthrax</td>
<td>Biothreat</td>
<td>Bioprot Corp</td>
<td>600 [60]</td>
</tr>
<tr>
<td>Al phosphate</td>
<td>PCV</td>
<td>Prevnar</td>
<td>Wyeth</td>
<td>125 [39]</td>
</tr>
<tr>
<td></td>
<td>MenC</td>
<td>Menitec</td>
<td>Wyeth</td>
<td>125 [39]</td>
</tr>
<tr>
<td></td>
<td>Al sulfate</td>
<td>Recombivax</td>
<td>Merck and Co</td>
<td>250 [61]</td>
</tr>
</tbody>
</table>

* Pediatric dose = 250 μg, adult dose = 500 μg.
countries where autism prevalence is lower. Table 5 shows a comparison between vaccine-derived Al exposures in adults and children. Due to their lower body weight, children attain a much higher Al exposure per kg of body weight than adults (73.5–172.5 μg/kg bw versus 7.1 μg/kg bw).

3.2. Correlation between ASD prevalence and vaccine-derived Al exposures in the US

Al exposure from vaccines in the US vaccination schedule from 1991 to 2008 shows a highly significant positive linear correlation with ASD prevalence at all three levels of exposure (Pearson $r = 0.92$, $p < 0.0001$), with 95% CI = 0.79–0.97 (Fig. 1; Table 6). In addition, we show in Table 7 that the number of Al-adjuvanted vaccines in the yearly vaccination schedules from 1991 to 2008 also yields a highly significant positive correlation with ASD prevalence (Pearson $r = 0.90$, $p < 0.0001$) with 95% CI = 0.76–0.96.

3.3. Correlation between ASD prevalence in the US, UK, Canada, Australia, Sweden, Finland and Iceland and Al exposure from pediatric vaccines

In Table 8 we show that the estimated cumulative vaccine-derived Al exposure yields a significant positive correlation with the current prevalence of ASD in seven Western countries at all three levels of exposure at 3–4 months of age. (Pearson $r = 0.89–0.94$, $p = 0.0018–0.0248$). ASD prevalence in these countries also significantly correlates with the number of Al-adjuvanted vaccines given at 3–18 months of age (Pearson $r = 0.89–0.94$, $p = 0.0018–0.0368$; Table 8).

4. Discussion

4.1. Summary and implications of main findings

To the best of our knowledge, these results are the first to show that Al, a highly neurotoxic metal and the most commonly used vaccine adjuvant, may be a significant contributing factor to the rising prevalence of ASD in the Western world. In particular, we show here that the correlation between ASD prevalence and Al adjuvant exposure appears to be the highest at 3–4 months of age (Pearson $r = 0.89–0.94$, $p = 0.0018–0.0248$; Table 8). We also show that children from countries with the highest ASD prevalence appear to have a much higher exposure to Al from vaccines, particularly at 2 months of age (Table 4). In this respect, we note that several prominent milestones of brain development in humans coincide with these periods. These include the onset of synaptogenesis (birth), maximal growth velocity of the hippocampus (2–3 postnatal months) [3] and the onset of amygdala maturation (8 weeks postnatal age) [81]. In addition, the period between 2 and 4 months is also one of major developmental transition in many biobehavioural systems, including sleep, temperature regulation, respiration and brain wave patterns [82,83], all of which are regulated by the neuroendocrine network [84,85]. Many of these aspects of brain function are known to be impaired in autism (i.e., sleeping and brain wave patterns [86–88]).

According to the FDA, vaccines represent a special category of drugs as they are generally given to healthy individuals [15]. Further according to the FDA, “this places significant emphasis on their [vaccine] safety” [15]. While the FDA does set an upper limit for Al in vaccines at no more than 850 μg/dose [89], it is important to note that this amount was selected empirically from data showing that Al in such amounts enhanced the antigenicity of the vaccine, rather than from existing safety...
Table 6
Statistical analysis summary. Correlation between the number of children with ASD (6–21 years of age) and the estimated Al exposure (μg) from pediatric vaccines in the period from 1991 to 2008 (US data). Significant change is indicated by the asterisk (*).

Pearson r	0.92	0.92	0.92
95% CI	0.79–0.97	0.80–0.97	0.80 to 0.97
p (two-tailed)	<0.0001	<0.0001	<0.0001
P value summary	*	*	*
(p <0.05)	Yes	Yes	Yes
R²	0.84	0.85	0.85

Table 7
Statistical analysis summary. Correlation between the number of children with ASD (6–21 years of age) and the number of Al-adjuvanted vaccines in the yearly vaccination schedule in the period from 1991 to 2008 (US data). Significant change is indicated by the asterisk (*).

Pearson r	0.90	0.90	0.90
95% CI	0.76–0.96	0.76–0.96	0.76–0.96
p (two-tailed)	<0.0001	<0.0001	<0.0001
P value summary	*	*	*
(p <0.05)	Yes	Yes	Yes
R²	0.82	0.82	0.82

Table 8
Pearson correlation summary according to age of vaccine exposure for ASD prevalence data in seven Western countries. Ages are expressed in months (mo). The adjusted p-values were derived using the resampling-based multiplicity adjustment according to Westfall and Young [78]. Note that for each country studied, the Al exposure is from all vaccines that children receive during the specified age period (i.e., the cumulative exposure to Al at 4 months of age includes Al from vaccines given at 2, 3, and 4 months). Significant change is indicated by the asterisk (*).

<table>
<thead>
<tr>
<th>Age</th>
<th>Minimum Al exposure</th>
<th>Mean Al exposure</th>
<th>Maximum Al exposure</th>
<th># Al-adjuvanted vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 months</td>
<td>Pearson r</td>
<td>0.89</td>
<td>0.86</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>0.40–0.98</td>
<td>0.29–0.98</td>
<td>0.21–0.97</td>
</tr>
<tr>
<td></td>
<td>p (unadjusted)</td>
<td>0.0077*</td>
<td>0.0149*</td>
<td>0.0199*</td>
</tr>
<tr>
<td></td>
<td>p (adjusted)</td>
<td>0.0246*</td>
<td>0.0062</td>
<td>0.1283</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.79</td>
<td>0.73</td>
<td>0.69</td>
</tr>
<tr>
<td>3 months</td>
<td>Pearson r</td>
<td>0.94</td>
<td>0.94</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>0.63–0.99</td>
<td>0.62–0.99</td>
<td>0.55–0.99</td>
</tr>
<tr>
<td></td>
<td>p (unadjusted)</td>
<td>0.0017*</td>
<td>0.0019*</td>
<td>0.0032*</td>
</tr>
<tr>
<td></td>
<td>p (adjusted)</td>
<td>0.0018*</td>
<td>0.0018*</td>
<td>0.0038*</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.88</td>
<td>0.88</td>
<td>0.85</td>
</tr>
<tr>
<td>4 months</td>
<td>Pearson r</td>
<td>0.89</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>0.41–0.98</td>
<td>0.45–0.99</td>
<td>0.46–0.99</td>
</tr>
<tr>
<td></td>
<td>p (unadjusted)</td>
<td>0.0067*</td>
<td>0.0059*</td>
<td>0.0055*</td>
</tr>
<tr>
<td></td>
<td>p (adjusted)</td>
<td>0.0248*</td>
<td>0.0209*</td>
<td>0.0168*</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.80</td>
<td>0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>6 months</td>
<td>Pearson r</td>
<td>0.85</td>
<td>0.83</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>0.26–0.98</td>
<td>0.21–0.97</td>
<td>0.17–0.97</td>
</tr>
<tr>
<td></td>
<td>p (unadjusted)</td>
<td>0.0160*</td>
<td>0.0206*</td>
<td>0.0248*</td>
</tr>
<tr>
<td></td>
<td>p (adjusted)</td>
<td>0.0895</td>
<td>0.1333</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.72</td>
<td>0.69</td>
<td>0.67</td>
</tr>
<tr>
<td>18 months</td>
<td>Pearson r</td>
<td>0.82</td>
<td>0.80</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>0.18–0.97</td>
<td>0.13–0.97</td>
<td>0.05–0.96</td>
</tr>
<tr>
<td></td>
<td>p (unadjusted)</td>
<td>0.0227*</td>
<td>0.0297*</td>
<td>0.0408*</td>
</tr>
<tr>
<td></td>
<td>p (adjusted)</td>
<td>0.1467</td>
<td>0.1871</td>
<td>0.3133</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.68</td>
<td>0.64</td>
<td>0.60</td>
</tr>
<tr>
<td>72 months</td>
<td>Pearson r</td>
<td>0.78</td>
<td>0.76</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>0.055–0.97</td>
<td>0.03–0.96</td>
<td>–0.02–0.96</td>
</tr>
<tr>
<td></td>
<td>p (unadjusted)</td>
<td>0.0402*</td>
<td>0.0456*</td>
<td>0.0550</td>
</tr>
<tr>
<td></td>
<td>p (adjusted)</td>
<td>0.3087</td>
<td>0.353</td>
<td>0.4128</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.60</td>
<td>0.58</td>
<td>0.55</td>
</tr>
</tbody>
</table>
4.2. Dietary versus injectable Al: what is the difference?

Given the bioavailability of Al through food sources, a common assertion in relation to Al in vaccines is that children obtain much more Al from diet. From this perspective, Al from vaccination does not represent a toxicological risk factor [39,103]. However, this notion contradicts basic toxicological principles. For instance, it should be obvious that the route of exposure which bypasses the protective barriers of the gastrointestinal tract and/or the skin will likely require a lower dose to produce a toxic outcome [14,16]. In the case of Al, only ~0.25% of dietary Al is absorbed into systemic circulation [104]. In contrast, Al hydroxide (the most common adjuvant form) injected intramuscularly may be absorbed at nearly 100% efficiency over time [105]. In addition, although the half-life of enterally or parenterally absorbed Al from the body is short (approximately 24 h), the same cannot be assumed for adjuvant-Al because the sizes of most antigen-Al complexes (24 to 83 kDa [60,106,107]) are higher than the molecular weight cut-off of the glomerulus of the kidney (~18 kDa [108]) which would preclude efficient excretion of Al adjuvants. In fact, a longer elimination period is one of the major properties of effective vaccine adjuvants, including those using Al salts [2,14]. Additionally, the tightness of bonding between the Al adjuvant and the antigen is considered a desired feature that can be used to predict the immunogenicity of vaccines [109]. Experiments in adult rabbits demonstrate that even in an antigen-free form, Al-hydroxide, the most commonly used Al adjuvant (Table 2) is poorly excreted. The cumulative amount of Al-hydroxide in the urine of adult rabbits as long as 28 days post intramuscular injection was less than 6% as measured by accelerator mass spectrometry [110]. Al-phosphate was more efficiently excreted (22%) [110]. Finally, it is important to recognize that neonates have anatomical and functional differences crucial for toxicokinetics and toxicodynamics of neurotoxic metals (e.g., an immature renal system and an incomplete BBB), which would further compromise their ability to eliminate Al adjuvants [2,45].

4.3. Study results in relation to Hill’s criteria: is there a causal relationship between Al vaccine adjuvants and the prevalence of ASD?

The positive correlation between Al exposure from vaccines and prevalence of ASD does not necessarily imply causation. However, if the correlation is strong (criterion 1), consistent (criterion 2) and if there is a biologically plausible mechanism by which it can be explained (criterion 6), as well as an appropriate temporal relationship between the proposed cause and the outcome (criterion 4), then the satisfaction of these criteria supports the notion that the two events may indeed be causally related. Our results satisfy not only all four of these criteria applicable for establishing causation in neuropsychiatry [80], but also four others. These additional criteria are: (5) biological gradient, (7) coherence with the current knowledge, (8) experimental or semi-experimental evidence and (9) the analogy with similar evidence (Table 9). These are discussed below as they are extremely relevant for the ways in which Al might induce ASD.

Thus, in total, the results of our study satisfy eight out of nine of Hill’s criteria for causation [41]. The only criterion that our current study fails to satisfy is the “specificity” criterion which is actually not applicable to ASD given that the latter is recognized as a multifactorial disease [20,21,111]. Overall, an analysis of our results indicates that the adjuvant effect of Al in vaccines may be a significant etiological factor in the increasing prevalence of ASD in some Western countries.
the blood, cerebrospinal fluid (CSF) and brain tissues of ASD patients (see Table 1). Increase in pro-inflammatory mediators that are induced by Al adjuvants were shown to be elevated in the blood, cerebrospinal fluid (CSF) and post-mortem brain tissue of ASD patients (see Table 1). Increase in pro-inflammatory mediators in autistic brains was also found concurrent with widespread activation of astro- and microglia and increased immunoreactivity to MHC class II [17], all of which can also be activated by Al-adjuvants (Table 1).

The positive and statistically significant correlation between vaccine-derived Al exposures (as well as the overall uptake of Al-adjuvanted vaccines), and ASD prevalence is consistently observed in different populations (Table 8). While ours is, to the best of our knowledge, the first study to investigate the possible association between Al vaccine adjuvants and ASD, at least three more studies have found a positive association between the prevalence of autism (and developmental disabilities) and vaccination uptake in early childhood, a result consistent with our findings [101,102,179]. In addition, a recent study showed that autistic children have higher than normal levels of Al in the body (hair, blood and/or urine) [92]. In contrast, neither copper, lead nor mercury were elevated beyond normal levels in these children [92].

Table 9
Study results in relation to Hill's criteria applicable for establishing causality between exposure and outcome.

<table>
<thead>
<tr>
<th>Hill's criterion</th>
<th>Does the current study satisfy the criterion?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength (1)</td>
<td>Yes</td>
<td>The association is highly statistically significant (Tables 6–8).</td>
</tr>
<tr>
<td>Consistency (2)</td>
<td>Yes</td>
<td>The positive and statistically significant correlation between vaccine-derived Al exposures (as well as the overall uptake of Al-adjuvanted vaccines), and ASD prevalence is consistently observed in different populations (Table 8). While ours is, to the best of our knowledge, the first study to investigate the possible association between Al vaccine adjuvants and ASD, at least three more studies have found a positive association between the prevalence of autism (and developmental disabilities) and vaccination uptake in early childhood, a result consistent with our findings [101,102,179]. In addition, a recent study showed that autistic children have higher than normal levels of Al in the body (hair, blood and/or urine) [92]. In contrast, neither copper, lead nor mercury were elevated beyond normal levels in these children [92].</td>
</tr>
<tr>
<td>Specificity (3)</td>
<td>No</td>
<td>Not applicable to diseases such as ASD with possible multifactorial etiologies [79].</td>
</tr>
<tr>
<td>Biological rationale (4)</td>
<td>Yes</td>
<td>Al is a neurotoxin and a strong immune stimulator, hence, Al has the necessary biochemical properties to induce neuroimmune disorders such as ASD. The immunostimulatory properties of Al adjuvants are numerous and affect both innate and adaptive immune responses (see Table 1). Chronic hyperactivation of immune responses by repeated short-interval administration of Al-adjuvants could: (i) disrupt the delicate balance of immune mediators which is crucial for proper brain development and function (i.e., members of the MHC, complement, pro-inflammatory cytokines TNF-α, IL-1β and IL-6 [25,119–127,141,142]); (ii) promote activation of neurogia and brain inflammation [29,97,139]; and (iii) promote aberrant immune responses [31,32,157], all of which are known pathophysiological features of ASD [17,20,23,111,147].</td>
</tr>
<tr>
<td>Temporal relationship (5)</td>
<td>Yes</td>
<td>Up until and during the early 1980s, the prevalence of ASD was relatively low (<5 in 10,000 children [180,181]). Currently, 1 in 91 children in the US is diagnosed with ASD (110 per 10,000 [73]). In the United Kingdom, current reported ASD prevalence is 1 in 64 children (157 per 10,000 [74]). The increase in the number of vaccines given to children precedes the “autism epidemic” (i.e., from 10 in the late 70s to 32 in 2010 (18 of which contain Al adjuvants) [16]). Note also that the dramatic increase in the prevalence of ASD observed over the last three decades in the US and the UK (2000–2006) cannot be convincingly explained by genetic factors alone nor by changes in diagnostic criteria. Concerning the latter, in many ways such criteria have become more restrictive [182]. Moreover, in a recent analysis comparing the prevalence of autism with that of other disabilities among successive birth cohorts of US school-aged children, Newschaffer et al. [180] clearly show that autism prevalence has been increasing with time, as evidenced by higher prevalences among younger birth cohorts.</td>
</tr>
<tr>
<td>Biological gradient (6)</td>
<td>Yes</td>
<td>The higher the Al exposure from vaccines, the higher the prevalence of ASD (Fig. 1; Table 4).</td>
</tr>
<tr>
<td>Coherence (7)</td>
<td>Yes</td>
<td>The same pro-inflammatory mediators that are induced by Al adjuvants are shown to be elevated in the blood, cerebrospinal fluid (CSF) and post-mortem brain tissue of ASD patients (see Table 1). Increase in pro-inflammatory mediators in autistic brains was also found concurrent with widespread activation of astro- and microglia and increased immunoreactivity to MHC class II [17], all of which can also be activated by Al-adjuvants (Table 1).</td>
</tr>
<tr>
<td>Experimental/experimental evidence (8)</td>
<td>Yes</td>
<td>Experimental evidence clearly shows that simultaneous administration of as little as two to three immune adjuvants can overcome genetic resistance to autoimmunity in animals [10]. While currently there is no</td>
</tr>
<tr>
<td>Analogy (9)</td>
<td>Yes</td>
<td>Peripheral stimulation of the immune system during critical periods of brain development can lead to ASD-related outcomes [9,118,187–189].</td>
</tr>
</tbody>
</table>

4.5. Al adjuvants and brain inflammation

Repeated injections of 1 mg/kg of Al nanoparticles to adult Sprague-Dawley rats is sufficient to produce significant inflammatory effects in the rat brain [139]. Comparable amounts of Al are administered to 2, 6 and 15 month old infants according to the US vaccination schedule (Table 3). Moreover, as we have demonstrated previously, only two subcutaneous injections of Al adjuvants (relevant to adult human exposure) in young male mice, spaced two weeks apart, were sufficient to cause dramatic activation of microglia and astrocytes that persisted up to 6 months post-injection. This outcome was accompanied by motor neuron death, impairments in motor function and decrements in spatial memory capacity [29,97]. What then might be the effects of repeated, closely spaced administration of Al adjuvanted vaccines (i.e., every 2–4 months from birth up until 12 months of age) in immature human infants? One possibility is that such treatment would increase the risk of chronic brain inflammation. In this regard, it is worth noting that neuroinflammatory mechanisms appear to play an important role in the pathophysiology of autism [17,20].

It is well established that peripheral immune insults can directly stimulate the synthesis of pro-inflammatory cytokines (i.e., IL-1β, IL-6 and tumor necrosis factor (TNF-α) within the brain [84,140], acting to promote inflammation even in the absence of a direct CNS infection. Moreover, the same pro-inflammatory mediators that are normally induced by Al adjuvants have been shown to be elevated in the blood, cerebrospinal fluid (CSF) and brain tissues of ASD patients (Table 1). The aberrant neuroinflammatory cytokine profile in autistic brains was found concurrently with widespread microgliarial and astrocyte activation. In particular, microgliosis in autism coincided with increased immunoreactivity to MHC class II markers [17]. Microglia, astrocytes, as well as members of the MHC and the complement cascade are crucial regulators of synaptic connectivity, function and plasticity and play key roles in establishing and modulating neuronal circuitry in the developing CNS [25,112,119–126,141,142]. Notably, abnormal brain connectivity is well recognized as one of the hallmarks of autism [143,144]. Cerebellar Purkinje cells, which are significantly reduced in autism, are a site of prominent MHC class I expression. One hypothesis currently under investigation is that specifically timed changes in neural MHC class I expression could contribute to autism [143].

Given that Al adjuvants activate both MHC class I and II, components of the complement cascade, increase pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, as well as activate microglia and astrocytes in the brain (Table 1), it is possible that they may also interfere with synaptic pruning and developmental activity-dependent synaptic remodeling/plasticity. At present, there is experimental evidence that Al can impair synaptic plasticity in vivo [91,145,146], which can be reversed by vasoressin treatment of Al-exposed rats [146].

4.6. Al adjuvants as promoters of autoimmune/inflammatory reactions in the brain

Experimental evidence clearly shows that simultaneous administration of as little as two to three immune adjuvants can overcome genetic resistance to autoimmunity in animals [10]. While currently there is no
direct evidence that Al can induce autoimmunity, it is important to rec-
ognize that it certainly has a biochemical potential to do so.

Autoimmune manifestations, particularly those affecting the CNS,
are prevalent in autistic individuals and do not appear to be limited
to only a few nervous system antigens. For example, Vojdani et al.
[147] demonstrated elevated levels of immunoglobulins (IgG, IgM
and IgA against nine different neuron-specific antigens in ASD chil-
dren. Such widespread manifestation of autoimmunity may have arisen
from an alteration in the BBB which would then have enabled access
of immunocompetent cells to many different central nervous
system antigens [147].

Al is known to disrupt the BBB and can increase its permeability by
increasing the rate of trans–membrane diffusion and by selectively alter-
ting saturable transport systems [5,148,149]. Even in an adjuvant
form, Al can enter the brain [98]. Furthermore, much like mercury,
Al may induce autoimmunity through the so-called “bystander” effect
[150]. Finally, Al’s ability to upregulate chemo-attractants such as
monocyte chemoattractant protein (MCP)-1, monocyte inflammatory
protein (MIP)-1α and MIP-1β [40], could promote the active recruit-
ment of immunocompetent cells into the brain, leading to inflam-
ma
tion and/or autoimmunity. Consistent with this interpretation, post-
mortem analysis of six children aged 4–17 months who died within
48 h of exposure to Al-adjuvanted hexavalent vaccines revealed ab-
normal pathologic findings in the nervous system, including a defec-
tive BBB, infiltration of the leptomeninges by macrophages and
lymphocytes, perivascular lymphocytic infiltration, diffuse infiltration
of the pons, mesencephalon and cortex by T-lymphocytes and in-
creased microglia in the hippocampus and pons [151]. The neuro-
pathological observations made by Zinka et al. [151] are consistent
with the well established immunostimulatory and neurotoxicological
properties of Al vaccine adjuvants.

5. Conclusions and future directions

By satisfying eight of the Hill’s criteria for establishing causality ap-
pli
cable to our study (Table 9), we show that Al-adjuvanted vaccines
may be a significant etiological factor in the rising prevalence of ASD
in the Western world. We also show that children from countries with
the highest ASD prevalence appear to have a much higher exposure to
Al from vaccines, particularly at 2 months of age. In addition, the cor-
relation between ASD prevalence and Al adjuvant exposure appears to be
the highest at 3–4 months of age. Of note, these periods (i.e., first 4 post-
natal months) coincide with several critical stages of human brain de-
velopment and biobehavioural transitions that are known to be
impaired in autism (i.e., onset of synaptogenesis, maximal growth ve-
lue
of the hippocampus [3], onset of amygdala maturation [81] and
development of brain-wave and sleeping patterns [82,83]).

Clearly, we cannot draw definite conclusions regarding the link be-
tween Al adjuvants and autism based on an ecological study such as
the present one and hence the validity of our results remains to be con-
firmed. A case control study with detailed examination of vaccination
records and Al body burden measurements (i.e., hair, urine, blood) in
autistic and a control group of children would be one step toward this
goal. Nonetheless, given that the scientific evidence appears to indicate
that vaccine safety is not as firmly established as often believed, it
would seem ill advised to exclude pediatric vaccinations as a possible
cause of adverse long-term neurodevelopmental outcomes, including
those associated with autism.

We have thus provided a hypothesis which we hope will encour-
age future research into this area in order to resolve the issue of
whether or not vaccines might be responsible in some part for the
growing prevalence of autism in the developed world. Such future re-
search should consider the following: (i) the postnatal period represents
a very sensitive phase in development during which the physiology of
the nervous as well as the immune system can be influenced and
sometimes permanently changed [8,9,118,119,152–154]; (ii) Al is a
neurotoxin and a strong immune adjuvant (Table 1), hence Al has all
the necessary biochemical properties to induce neurological and immune
disorders; and (iii) autism is a multisystem disorder characterized by
dysfunctional immunity and impaired brain function [17,20,22]. Because
the current safety data for Al exposure in infants and children is unsatis-
factory and because this demographic represents those who may be most
at risk for complications following vaccination, a more rigorous evalu-
ation of Al adjuvant safety than what has been provided to date seems
warranted.

6. Competing interests

CAS is a founder and shareholder of Neurodyn Corporation, Inc.
The company investigates early state adult neurological disease
mechanisms and biomarkers. This work and any views expressed
within it are solely those of the authors and not of any affiliated bod-
ies or organizations. CAS and LT are in favor of a more rigorous evi-
dence based medicine approach to vaccine safety.

Abbreviations

ASD autism spectrum disorders
Al aluminum
APC antigen presenting cells
BBB blood brain barrier
CDC Centers for Disease Control and Prevention
CNS central nervous system
CFS chronic fatigue syndrome
CTL cytotoxic T cell
DTPa Diphtheria, Tetanus, acellular Pertussis
EAE experimental autoimmune encephalomyelitis
FDA Food and Drug Administration
GFAP glial fibrillary acidic protein
GWS Gulf War syndrome
HA Hepatitis A
HB Hepatitis B
Hib Haemophilus influenza type b
IDEA The Individuals with Disabilities Education Act
Ig Immunoglobulin
IL interleukin
LPS lipopolysaccharide
MCP monocyte chemoattractant protein
MenC Meningococcal serogroup C
MHC major histocompatibility complex
MIP monocyte inflammatory protein
MMF Macrophagic myofasciitis
MS multiple sclerosis
NLRP3 nucleotide-binding domain, leucine-rich, repeat containing
family, Pyrin-domain containing 3
NO nitric oxide
PCV Pneumococcal
ROS reactive oxygen species
TNF-α tumor necrosis factor

Acknowledgments

The authors would like to thank Dr. James Garrett for his invaluable
help with statistical analysis. This work was supported by the
Katlyn Fox and the Dwoskin Family Foundations.

References

Please cite this article as: L. Tomljenovic, C.A. Shaw, Do aluminum vaccine adjuvants contribute to the rising prevalence of autism?, J. Inorg.
[49] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2006; http://www.idea.gov/arch/rock.asp?part=BC.
[50] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2006; http://www.idea.gov/arch/rock.asp?part=BC.
[51] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2007; http://www.idea.gov/arch/rock.asp?part=BC.
[52] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2007; http://www.idea.gov/arch/rock.asp?part=BC.
[53] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2008; http://www.idea.gov/arch/rock.asp?part=BC.
[54] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2008; http://www.idea.gov/arch/rock.asp?part=BC.
[55] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2009; http://www.idea.gov/arch/rock.asp?part=BC.
[56] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2009; http://www.idea.gov/arch/rock.asp?part=BC.
[57] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2010; http://www.idea.gov/arch/rock.asp?part=BC.
[58] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2010; http://www.idea.gov/arch/rock.asp?part=BC.
[59] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2011; http://www.idea.gov/arch/rock.asp?part=BC.
[60] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2011; http://www.idea.gov/arch/rock.asp?part=BC.
[61] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2012; http://www.idea.gov/arch/rock.asp?part=BC.
[62] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2012; http://www.idea.gov/arch/rock.asp?part=BC.
[63] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2013; http://www.idea.gov/arch/rock.asp?part=BC.
[64] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2013; http://www.idea.gov/arch/rock.asp?part=BC.
[65] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2014; http://www.idea.gov/arch/rock.asp?part=BC.
[66] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2014; http://www.idea.gov/arch/rock.asp?part=BC.
[67] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2015; http://www.idea.gov/arch/rock.asp?part=BC.
[68] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2015; http://www.idea.gov/arch/rock.asp?part=BC.
[69] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2016; http://www.idea.gov/arch/rock.asp?part=BC.
[70] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2016; http://www.idea.gov/arch/rock.asp?part=BC.
[71] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2017; http://www.idea.gov/arch/rock.asp?part=BC.
[72] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2017; http://www.idea.gov/arch/rock.asp?part=BC.
[73] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2018; http://www.idea.gov/arch/rock.asp?part=BC.
[74] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2018; http://www.idea.gov/arch/rock.asp?part=BC.
[75] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2019; http://www.idea.gov/arch/rock.asp?part=BC.
[76] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2019; http://www.idea.gov/arch/rock.asp?part=BC.
[77] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–3, Students Ages 6 through 21 served under IDEA, Part B, by Disability Category and State, 2020; http://www.idea.gov/arch/rock.asp?part=BC.
[78] The Individuals with Disabilities Education Act (IDEA) Data Accountability Center, Data Tables for OSEP State Reported Data, Part B Child Count, Table 1–7, Children and Students Served under IDEA, Part B, in the U.S. and Outlying Areas, by Age and Disability Category, 2020; http://www.idea.gov/arch/rock.asp?part=BC.